[BSDI Home Page] MAN ssh

Index Page and Help

Type of Search:
Man Page Lookup
Apropos Keyword Search (all sections)
Man Page or Keyword Search:

This data is part of a licensed program from BERKELEY SOFTWARE DESIGN, INC. Portions are copyrighted by BSDI, The Regents of the University of California, Massachusetts Institute of Technology, Free Software Foundation, and others.


SSH(1)\375#009;\375#009;\375#009;FreeBSD General Commands Manual \375#009;\375#009;SSH(1)

NAME
     ssh -- OpenSSH SSH client (remote login program)

SYNOPSIS
     ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec] [-D
\375#009; [bind_address:]port] [-e escape_char] [-F configfile]
\375#009; [-i identity_file] [-L  [bind_address:]port:host:hostport]
\375#009; [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p port] [-R
\375#009; [bind_address:]port:host:hostport] [-S ctl_path]
\375#009; [-w local_tun[:remote_tun]] [user@]hostname [command]

DESCRIPTION
     ssh (SSH client) is a program for logging into a remote machine and for
     executing commands on a remote machine.  It is intended to replace rlogin
     and rsh, and provide secure encrypted communications between two
     untrusted hosts over an insecure network.\375#009;X11 connections and arbitrary
     TCP ports can also be forwarded over the secure channel.

     ssh connects and logs into the specified hostname (with optional user
     name).  The user must prove his/her identity to the remote machine using
     one of several methods depending on the protocol version used (see
     below).

     If command is specified, it is executed on the remote host instead of a
     login shell.

     The options are as follows:

     -1      Forces ssh to try protocol version 1 only.

     -2      Forces ssh to try protocol version 2 only.

     -4      Forces ssh to use IPv4 addresses only.

     -6      Forces ssh to use IPv6 addresses only.

     -A      Enables forwarding of the authentication agent connection.  This
\375#009;     can also be specified on a per-host basis in a configuration
\375#009;     file.

\375#009;     Agent forwarding should be enabled with caution.  Users with the
\375#009;     ability to bypass file permissions on the remote host (for the
\375#009;     agent's Unix-domain socket) can access the local agent through
\375#009;     the forwarded connection.\375#009;An attacker cannot obtain key material
\375#009;     from the agent, however they can perform operations on the keys
\375#009;     that enable them to authenticate using the identities loaded into
\375#009;     the agent.

     -a      Disables forwarding of the authentication agent connection.

     -b bind_address
\375#009;     Use bind_address on the local machine as the source address of
\375#009;     the connection.  Only useful on systems with more than one
\375#009;     address.

     -C      Requests compression of all data (including stdin, stdout,
\375#009;     stderr, and data for forwarded X11 and TCP connections).  The
\375#009;     compression algorithm is the same used by gzip(1), and the
\375#009;     ``level'' can be controlled by the CompressionLevel option for
\375#009;     protocol version 1.  Compression is desirable on modem lines and
\375#009;     other slow connections, but will only slow down things on fast
\375#009;     networks.\375#009;The default value can be set on a host-by-host basis
\375#009;     in the configuration files; see the Compression option.

     -c cipher_spec
\375#009;     Selects the cipher specification for encrypting the session.

\375#009;     Protocol version 1 allows specification of a single cipher.  The
\375#009;     supported values are ``3des'', ``blowfish'', and ``des''.\375#009;3des
\375#009;     (triple-des) is an encrypt-decrypt-encrypt triple with three dif-
\375#009;     ferent keys.  It is believed to be secure.  blowfish is a fast
\375#009;     block cipher; it appears very secure and is much faster than
\375#009;     3des.  des is only supported in the ssh client for interoperabil-
\375#009;     ity with legacy protocol 1 implementations that do not support
\375#009;     the 3des cipher.  Its use is strongly discouraged due to crypto-
\375#009;     graphic weaknesses.  The default is ``3des''.

\375#009;     For protocol version 2, cipher_spec is a comma-separated list of
\375#009;     ciphers listed in order of preference.  The supported ciphers
\375#009;     are: 3des-cbc, aes128-cbc, aes192-cbc, aes256-cbc, aes128-ctr,
\375#009;     aes192-ctr, aes256-ctr, arcfour128, arcfour256, arcfour, blow-
\375#009;     fish-cbc, and cast128-cbc.  The default is:

\375#009;\375#009;   aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour128,
\375#009;\375#009;   arcfour256,arcfour,aes192-cbc,aes256-cbc,aes128-ctr,
\375#009;\375#009;   aes192-ctr,aes256-ctr

     -D [bind_address:]port
\375#009;     Specifies a local ``dynamic'' application-level port forwarding.
\375#009;     This works by allocating a socket to listen to port on the local
\375#009;     side, optionally bound to the specified bind_address.  Whenever a
\375#009;     connection is made to this port, the connection is forwarded over
\375#009;     the secure channel, and the application protocol is then used to
\375#009;     determine where to connect to from the remote machine.  Currently
\375#009;     the SOCKS4 and SOCKS5 protocols are supported, and ssh will act
\375#009;     as a SOCKS server.  Only root can forward privileged ports.
\375#009;     Dynamic port forwardings can also be specified in the configura-
\375#009;     tion file.

\375#009;     IPv6 addresses can be specified with an alternative syntax:
\375#009;     [bind_address/]port or by enclosing the address in square brack-
\375#009;     ets.  Only the superuser can forward privileged ports.  By
\375#009;     default, the local port is bound in accordance with the
\375#009;     GatewayPorts setting.  However, an explicit bind_address may be
\375#009;     used to bind the connection to a specific address.  The
\375#009;     bind_address of ``localhost'' indicates that the listening port
\375#009;     be bound for local use only, while an empty address or `*' indi-
\375#009;     cates that the port should be available from all interfaces.

     -e escape_char
\375#009;     Sets the escape character for sessions with a pty (default: `~').
\375#009;     The escape character is only recognized at the beginning of a
\375#009;     line.  The escape character followed by a dot (`.') closes the
\375#009;     connection; followed by control-Z suspends the connection; and
\375#009;     followed by itself sends the escape character once.  Setting the
\375#009;     character to ``none'' disables any escapes and makes the session
\375#009;     fully transparent.

     -F configfile
\375#009;     Specifies an alternative per-user configuration file.  If a con-
\375#009;     figuration file is given on the command line, the system-wide
\375#009;     configuration file (/etc/ssh/ssh_config) will be ignored.\375#009;The
\375#009;     default for the per-user configuration file is ~/.ssh/config.

     -f      Requests ssh to go to background just before command execution.
\375#009;     This is useful if ssh is going to ask for passwords or
\375#009;     passphrases, but the user wants it in the background.  This
\375#009;     implies -n.  The recommended way to start X11 programs at a
\375#009;     remote site is with something like ssh -f host xterm.

\375#009;     If the ExitOnForwardFailure configuration option is set to
\375#009;     ``yes'', then a client started with -f will wait for all remote
\375#009;     port forwards to be successfully established before placing
\375#009;     itself in the background.

     -g      Allows remote hosts to connect to local forwarded ports.

     -I smartcard_device
\375#009;     Specify the device ssh should use to communicate with a smartcard
\375#009;     used for storing the user's private RSA key.  This option is only
\375#009;     available if support for smartcard devices is compiled in
\375#009;     (default is no support).

     -i identity_file
\375#009;     Selects a file from which the identity (private key) for RSA or
\375#009;     DSA authentication is read.  The default is ~/.ssh/identity for
\375#009;     protocol version 1, and ~/.ssh/id_rsa and ~/.ssh/id_dsa for pro-
\375#009;     tocol version 2.  Identity files may also be specified on a per-
\375#009;     host basis in the configuration file.  It is possible to have
\375#009;     multiple -i options (and multiple identities specified in config-
\375#009;     uration files).

     -K      Enables GSSAPI-based authentication and forwarding (delegation)
\375#009;     of GSSAPI credentials to the server.

     -k      Disables forwarding (delegation) of GSSAPI credentials to the
\375#009;     server.

     -L [bind_address:]port:host:hostport
\375#009;     Specifies that the given port on the local (client) host is to be
\375#009;     forwarded to the given host and port on the remote side.  This
\375#009;     works by allocating a socket to listen to port on the local side,
\375#009;     optionally bound to the specified bind_address.  Whenever a con-
\375#009;     nection is made to this port, the connection is forwarded over
\375#009;     the secure channel, and a connection is made to host port
\375#009;     hostport from the remote machine.\375#009;Port forwardings can also be
\375#009;     specified in the configuration file.  IPv6 addresses can be spec-
\375#009;     ified with an alternative syntax:
\375#009;     [bind_address/]port/host/hostport or by enclosing the address in
\375#009;     square brackets.  Only the superuser can forward privileged
\375#009;     ports.  By default, the local port is bound in accordance with
\375#009;     the GatewayPorts setting.\375#009;However, an explicit bind_address may
\375#009;     be used to bind the connection to a specific address.  The
\375#009;     bind_address of ``localhost'' indicates that the listening port
\375#009;     be bound for local use only, while an empty address or `*' indi-
\375#009;     cates that the port should be available from all interfaces.

     -l login_name
\375#009;     Specifies the user to log in as on the remote machine.  This also
\375#009;     may be specified on a per-host basis in the configuration file.

     -M      Places the ssh client into ``master'' mode for connection shar-
\375#009;     ing.  Multiple -M options places ssh into ``master'' mode with
\375#009;     confirmation required before slave connections are accepted.
\375#009;     Refer to the description of ControlMaster in ssh_config(5) for
\375#009;     details.

     -m mac_spec
\375#009;     Additionally, for protocol version 2 a comma-separated list of
\375#009;     MAC (message authentication code) algorithms can be specified in
\375#009;     order of preference.  See the MACs keyword for more information.

     -N      Do not execute a remote command.  This is useful for just for-
\375#009;     warding ports (protocol version 2 only).

     -n      Redirects stdin from /dev/null (actually, prevents reading from
\375#009;     stdin).  This must be used when ssh is run in the background.  A
\375#009;     common trick is to use this to run X11 programs on a remote
\375#009;     machine.  For example, ssh -n shadows.cs.hut.fi emacs & will
\375#009;     start an emacs on shadows.cs.hut.fi, and the X11 connection will
\375#009;     be automatically forwarded over an encrypted channel.  The ssh
\375#009;     program will be put in the background.  (This does not work if
\375#009;     ssh needs to ask for a password or passphrase; see also the -f
\375#009;     option.)

     -O ctl_cmd
\375#009;     Control an active connection multiplexing master process.\375#009;When
\375#009;     the -O option is specified, the ctl_cmd argument is interpreted
\375#009;     and passed to the master process.\375#009;Valid commands are: ``check''
\375#009;     (check that the master process is running) and ``exit'' (request
\375#009;     the master to exit).

     -o option
\375#009;     Can be used to give options in the format used in the configura-
\375#009;     tion file.  This is useful for specifying options for which there
\375#009;     is no separate command-line flag.\375#009;For full details of the
\375#009;     options listed below, and their possible values, see
\375#009;     ssh_config(5).

\375#009;\375#009;   AddressFamily
\375#009;\375#009;   BatchMode
\375#009;\375#009;   BindAddress
\375#009;\375#009;   ChallengeResponseAuthentication
\375#009;\375#009;   CheckHostIP
\375#009;\375#009;   Cipher
\375#009;\375#009;   Ciphers
\375#009;\375#009;   ClearAllForwardings
\375#009;\375#009;   Compression
\375#009;\375#009;   CompressionLevel
\375#009;\375#009;   ConnectionAttempts
\375#009;\375#009;   ConnectTimeout
\375#009;\375#009;   ControlMaster
\375#009;\375#009;   ControlPath
\375#009;\375#009;   DynamicForward
\375#009;\375#009;   EscapeChar
\375#009;\375#009;   ExitOnForwardFailure
\375#009;\375#009;   ForwardAgent
\375#009;\375#009;   ForwardX11
\375#009;\375#009;   ForwardX11Trusted
\375#009;\375#009;   GatewayPorts
\375#009;\375#009;   GlobalKnownHostsFile
\375#009;\375#009;   GSSAPIAuthentication
\375#009;\375#009;   GSSAPIDelegateCredentials
\375#009;\375#009;   HashKnownHosts
\375#009;\375#009;   Host
\375#009;\375#009;   HostbasedAuthentication
\375#009;\375#009;   HostKeyAlgorithms
\375#009;\375#009;   HostKeyAlias
\375#009;\375#009;   HostName
\375#009;\375#009;   IdentityFile
\375#009;\375#009;   IdentitiesOnly
\375#009;\375#009;   KbdInteractiveDevices
\375#009;\375#009;   LocalCommand
\375#009;\375#009;   LocalForward
\375#009;\375#009;   LogLevel
\375#009;\375#009;   MACs
\375#009;\375#009;   NoHostAuthenticationForLocalhost
\375#009;\375#009;   NumberOfPasswordPrompts
\375#009;\375#009;   PasswordAuthentication
\375#009;\375#009;   PermitLocalCommand
\375#009;\375#009;   Port
\375#009;\375#009;   PreferredAuthentications
\375#009;\375#009;   Protocol
\375#009;\375#009;   ProxyCommand
\375#009;\375#009;   PubkeyAuthentication
\375#009;\375#009;   RekeyLimit
\375#009;\375#009;   RemoteForward
\375#009;\375#009;   RhostsRSAAuthentication
\375#009;\375#009;   RSAAuthentication
\375#009;\375#009;   SendEnv
\375#009;\375#009;   ServerAliveInterval
\375#009;\375#009;   ServerAliveCountMax
\375#009;\375#009;   SmartcardDevice
\375#009;\375#009;   StrictHostKeyChecking
\375#009;\375#009;   TCPKeepAlive
\375#009;\375#009;   Tunnel
\375#009;\375#009;   TunnelDevice
\375#009;\375#009;   UsePrivilegedPort
\375#009;\375#009;   User
\375#009;\375#009;   UserKnownHostsFile
\375#009;\375#009;   VerifyHostKeyDNS
\375#009;\375#009;   VisualHostKey
\375#009;\375#009;   XAuthLocation

     -p port
\375#009;     Port to connect to on the remote host.  This can be specified on
\375#009;     a per-host basis in the configuration file.

     -q      Quiet mode.  Causes most warning and diagnostic messages to be
\375#009;     suppressed.

     -R [bind_address:]port:host:hostport
\375#009;     Specifies that the given port on the remote (server) host is to
\375#009;     be forwarded to the given host and port on the local side.  This
\375#009;     works by allocating a socket to listen to port on the remote
\375#009;     side, and whenever a connection is made to this port, the connec-
\375#009;     tion is forwarded over the secure channel, and a connection is
\375#009;     made to host port hostport from the local machine.

\375#009;     Port forwardings can also be specified in the configuration file.
\375#009;     Privileged ports can be forwarded only when logging in as root on
\375#009;     the remote machine.  IPv6 addresses can be specified by enclosing
\375#009;     the address in square braces or using an alternative syntax:
\375#009;     [bind_address/]host/port/hostport.

\375#009;     By default, the listening socket on the server will be bound to
\375#009;     the loopback interface only.  This may be overridden by specify-
\375#009;     ing a bind_address.  An empty bind_address, or the address `*',
\375#009;     indicates that the remote socket should listen on all interfaces.
\375#009;     Specifying a remote bind_address will only succeed if the
\375#009;     server's GatewayPorts option is enabled (see sshd_config(5)).

\375#009;     If the port argument is `0', the listen port will be dynamically
\375#009;     allocated on the server and reported to the client at run time.

     -S ctl_path
\375#009;     Specifies the location of a control socket for connection shar-
\375#009;     ing.  Refer to the description of ControlPath and ControlMaster
\375#009;     in ssh_config(5) for details.

     -s      May be used to request invocation of a subsystem on the remote
\375#009;     system.  Subsystems are a feature of the SSH2 protocol which
\375#009;     facilitate the use of SSH as a secure transport for other appli-
\375#009;     cations (eg. sftp(1)).  The subsystem is specified as the remote
\375#009;     command.

     -T      Disable pseudo-tty allocation.

     -t      Force pseudo-tty allocation.  This can be used to execute arbi-
\375#009;     trary screen-based programs on a remote machine, which can be
\375#009;     very useful, e.g. when implementing menu services.  Multiple -t
\375#009;     options force tty allocation, even if ssh has no local tty.

     -V      Display the version number and exit.

     -v      Verbose mode.  Causes ssh to print debugging messages about its
\375#009;     progress.\375#009;This is helpful in debugging connection, authentica-
\375#009;     tion, and configuration problems.\375#009;Multiple -v options increase
\375#009;     the verbosity.  The maximum is 3.

     -w local_tun[:remote_tun]
\375#009;     Requests tunnel device forwarding with the specified tun(4)
\375#009;     devices between the client (local_tun) and the server
\375#009;     (remote_tun).

\375#009;     The devices may be specified by numerical ID or the keyword
\375#009;     ``any'', which uses the next available tunnel device.  If
\375#009;     remote_tun is not specified, it defaults to ``any''.  See also
\375#009;     the Tunnel and TunnelDevice directives in ssh_config(5).  If the
\375#009;     Tunnel directive is unset, it is set to the default tunnel mode,
\375#009;     which is ``point-to-point''.

     -X      Enables X11 forwarding.  This can also be specified on a per-host
\375#009;     basis in a configuration file.

\375#009;     X11 forwarding should be enabled with caution.  Users with the
\375#009;     ability to bypass file permissions on the remote host (for the
\375#009;     user's X authorization database) can access the local X11 display
\375#009;     through the forwarded connection.\375#009;An attacker may then be able
\375#009;     to perform activities such as keystroke monitoring.

\375#009;     For this reason, X11 forwarding is subjected to X11 SECURITY
\375#009;     extension restrictions by default.  Please refer to the ssh -Y
\375#009;     option and the ForwardX11Trusted directive in ssh_config(5) for
\375#009;     more information.

     -x      Disables X11 forwarding.

     -Y      Enables trusted X11 forwarding.  Trusted X11 forwardings are not
\375#009;     subjected to the X11 SECURITY extension controls.

     -y      Send log information using the syslog(3) system module.  By
\375#009;     default this information is sent to stderr.

     ssh may additionally obtain configuration data from a per-user configura-
     tion file and a system-wide configuration file.  The file format and con-
     figuration options are described in ssh_config(5).

     ssh exits with the exit status of the remote command or with 255 if an
     error occurred.

AUTHENTICATION
     The OpenSSH SSH client supports SSH protocols 1 and 2.  Protocol 2 is the
     default, with ssh falling back to protocol 1 if it detects protocol 2 is
     unsupported.  These settings may be altered using the Protocol option in
     ssh_config(5), or enforced using the -1 and -2 options (see above).  Both
     protocols support similar authentication methods, but protocol 2 is pre-
     ferred since it provides additional mechanisms for confidentiality (the
     traffic is encrypted using AES, 3DES, Blowfish, CAST128, or Arcfour) and
     integrity (hmac-md5, hmac-sha1, umac-64, hmac-ripemd160).\375#009;Protocol 1
     lacks a strong mechanism for ensuring the integrity of the connection.

     The methods available for authentication are: GSSAPI-based authentica-
     tion, host-based authentication, public key authentication, challenge-
     response authentication, and password authentication.  Authentication
     methods are tried in the order specified above, though protocol 2 has a
     configuration option to change the default order:
     PreferredAuthentications.

     Host-based authentication works as follows: If the machine the user logs
     in from is listed in /etc/hosts.equiv or /etc/ssh/shosts.equiv on the
     remote machine, and the user names are the same on both sides, or if the
     files ~/.rhosts or ~/.shosts exist in the user's home directory on the
     remote machine and contain a line containing the name of the client
     machine and the name of the user on that machine, the user is considered
     for login.  Additionally, the server must be able to verify the client's
     host key (see the description of /etc/ssh/ssh_known_hosts and
     ~/.ssh/known_hosts, below) for login to be permitted.  This authentica-
     tion method closes security holes due to IP spoofing, DNS spoofing, and
     routing spoofing.\375#009;[Note to the administrator: /etc/hosts.equiv,
     ~/.rhosts, and the rlogin/rsh protocol in general, are inherently inse-
     cure and should be disabled if security is desired.]

     Public key authentication works as follows: The scheme is based on pub-
     lic-key cryptography, using cryptosystems where encryption and decryption
     are done using separate keys, and it is unfeasible to derive the decryp-
     tion key from the encryption key.\375#009;The idea is that each user creates a
     public/private key pair for authentication purposes.  The server knows
     the public key, and only the user knows the private key.  ssh implements
     public key authentication protocol automatically, using either the RSA or
     DSA algorithms.  Protocol 1 is restricted to using only RSA keys, but
     protocol 2 may use either.  The HISTORY section of ssl(8) contains a
     brief discussion of the two algorithms.

     The file ~/.ssh/authorized_keys lists the public keys that are permitted
     for logging in.  When the user logs in, the ssh program tells the server
     which key pair it would like to use for authentication.  The client
     proves that it has access to the private key and the server checks that
     the corresponding public key is authorized to accept the account.

     The user creates his/her key pair by running ssh-keygen(1).  This stores
     the private key in ~/.ssh/identity (protocol 1), ~/.ssh/id_dsa (protocol
     2 DSA), or ~/.ssh/id_rsa (protocol 2 RSA) and stores the public key in
     ~/.ssh/identity.pub (protocol 1), ~/.ssh/id_dsa.pub (protocol 2 DSA), or
     ~/.ssh/id_rsa.pub (protocol 2 RSA) in the user's home directory.  The
     user should then copy the public key to ~/.ssh/authorized_keys in his/her
     home directory on the remote machine.  The authorized_keys file corre-
     sponds to the conventional ~/.rhosts file, and has one key per line,
     though the lines can be very long.  After this, the user can log in with-
     out giving the password.

     The most convenient way to use public key authentication may be with an
     authentication agent.  See ssh-agent(1) for more information.

     Challenge-response authentication works as follows: The server sends an
     arbitrary "challenge" text, and prompts for a response.  Protocol 2
     allows multiple challenges and responses; protocol 1 is restricted to
     just one challenge/response.  Examples of challenge-response authentica-
     tion include BSD Authentication (see login.conf(5)) and PAM (some non-
     OpenBSD systems).

     Finally, if other authentication methods fail, ssh prompts the user for a
     password.\375#009;The password is sent to the remote host for checking; however,
     since all communications are encrypted, the password cannot be seen by
     someone listening on the network.

     ssh automatically maintains and checks a database containing identifica-
     tion for all hosts it has ever been used with.  Host keys are stored in
     ~/.ssh/known_hosts in the user's home directory.  Additionally, the file
     /etc/ssh/ssh_known_hosts is automatically checked for known hosts.  Any
     new hosts are automatically added to the user's file.  If a host's iden-
     tification ever changes, ssh warns about this and disables password
     authentication to prevent server spoofing or man-in-the-middle attacks,
     which could otherwise be used to circumvent the encryption.  The
     StrictHostKeyChecking option can be used to control logins to machines
     whose host key is not known or has changed.

     When the user's identity has been accepted by the server, the server
     either executes the given command, or logs into the machine and gives the
     user a normal shell on the remote machine.  All communication with the
     remote command or shell will be automatically encrypted.

     If a pseudo-terminal has been allocated (normal login session), the user
     may use the escape characters noted below.

     If no pseudo-tty has been allocated, the session is transparent and can
     be used to reliably transfer binary data.\375#009;On most systems, setting the
     escape character to ``none'' will also make the session transparent even
     if a tty is used.

     The session terminates when the command or shell on the remote machine
     exits and all X11 and TCP connections have been closed.

ESCAPE CHARACTERS
     When a pseudo-terminal has been requested, ssh supports a number of func-
     tions through the use of an escape character.

     A single tilde character can be sent as ~~ or by following the tilde by a
     character other than those described below.  The escape character must
     always follow a newline to be interpreted as special.  The escape charac-
     ter can be changed in configuration files using the EscapeChar configura-
     tion directive or on the command line by the -e option.

     The supported escapes (assuming the default `~') are:

     ~.      Disconnect.

     ~^Z     Background ssh.

     ~#      List forwarded connections.

     ~&      Background ssh at logout when waiting for forwarded connection /
\375#009;     X11 sessions to terminate.

     ~?      Display a list of escape characters.

     ~B      Send a BREAK to the remote system (only useful for SSH protocol
\375#009;     version 2 and if the peer supports it).

     ~C      Open command line.  Currently this allows the addition of port
\375#009;     forwardings using the -L, -R and -D options (see above).  It also
\375#009;     allows the cancellation of existing remote port-forwardings using
\375#009;     -KR[bind_address:]port.  !command allows the user to execute a
\375#009;     local command if the PermitLocalCommand option is enabled in
\375#009;     ssh_config(5).  Basic help is available, using the -h option.

     ~R      Request rekeying of the connection (only useful for SSH protocol
\375#009;     version 2 and if the peer supports it).

TCP FORWARDING
     Forwarding of arbitrary TCP connections over the secure channel can be
     specified either on the command line or in a configuration file.  One
     possible application of TCP forwarding is a secure connection to a mail
     server; another is going through firewalls.

     In the example below, we look at encrypting communication between an IRC
     client and server, even though the IRC server does not directly support
     encrypted communications.\375#009;This works as follows: the user connects to
     the remote host using ssh, specifying a port to be used to forward con-
     nections to the remote server.  After that it is possible to start the
     service which is to be encrypted on the client machine, connecting to the
     same local port, and ssh will encrypt and forward the connection.

     The following example tunnels an IRC session from client machine
     ``127.0.0.1'' (localhost) to remote server ``server.example.com'':

\375#009; $ ssh -f -L 1234:localhost:6667 server.example.com sleep 10
\375#009; $ irc -c '#users' -p 1234 pinky 127.0.0.1

     This tunnels a connection to IRC server ``server.example.com'', joining
     channel ``#users'', nickname ``pinky'', using port 1234.  It doesn't mat-
     ter which port is used, as long as it's greater than 1023 (remember, only
     root can open sockets on privileged ports) and doesn't conflict with any
     ports already in use.  The connection is forwarded to port 6667 on the
     remote server, since that's the standard port for IRC services.

     The -f option backgrounds ssh and the remote command ``sleep 10'' is
     specified to allow an amount of time (10 seconds, in the example) to
     start the service which is to be tunnelled.  If no connections are made
     within the time specified, ssh will exit.

X11 FORWARDING
     If the ForwardX11 variable is set to ``yes'' (or see the description of
     the -X, -x, and -Y options above) and the user is using X11 (the DISPLAY
     environment variable is set), the connection to the X11 display is auto-
     matically forwarded to the remote side in such a way that any X11 pro-
     grams started from the shell (or command) will go through the encrypted
     channel, and the connection to the real X server will be made from the
     local machine.  The user should not manually set DISPLAY.\375#009;Forwarding of
     X11 connections can be configured on the command line or in configuration
     files.

     The DISPLAY value set by ssh will point to the server machine, but with a
     display number greater than zero.\375#009;This is normal, and happens because
     ssh creates a ``proxy'' X server on the server machine for forwarding the
     connections over the encrypted channel.

     ssh will also automatically set up Xauthority data on the server machine.
     For this purpose, it will generate a random authorization cookie, store
     it in Xauthority on the server, and verify that any forwarded connections
     carry this cookie and replace it by the real cookie when the connection
     is opened.  The real authentication cookie is never sent to the server
     machine (and no cookies are sent in the plain).

     If the ForwardAgent variable is set to ``yes'' (or see the description of
     the -A and -a options above) and the user is using an authentication
     agent, the connection to the agent is automatically forwarded to the
     remote side.

VERIFYING HOST KEYS
     When connecting to a server for the first time, a fingerprint of the
     server's public key is presented to the user (unless the option
     StrictHostKeyChecking has been disabled).\375#009;Fingerprints can be determined
     using ssh-keygen(1):

\375#009;   $ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key

     If the fingerprint is already known, it can be matched and the key can be
     accepted or rejected.  Because of the difficulty of comparing host keys
     just by looking at hex strings, there is also support to compare host
     keys visually, using random art.  By setting the VisualHostKey option to
     ``yes'', a small ASCII graphic gets displayed on every login to a server,
     no matter if the session itself is interactive or not.  By learning the
     pattern a known server produces, a user can easily find out that the host
     key has changed when a completely different pattern is displayed.
     Because these patterns are not unambiguous however, a pattern that looks
     similar to the pattern remembered only gives a good probability that the
     host key is the same, not guaranteed proof.

     To get a listing of the fingerprints along with their random art for all
     known hosts, the following command line can be used:

\375#009;   $ ssh-keygen -lv -f ~/.ssh/known_hosts

     If the fingerprint is unknown, an alternative method of verification is
     available: SSH fingerprints verified by DNS.  An additional resource
     record (RR), SSHFP, is added to a zonefile and the connecting client is
     able to match the fingerprint with that of the key presented.

     In this example, we are connecting a client to a server,
     ``host.example.com''.  The SSHFP resource records should first be added
     to the zonefile for host.example.com:

\375#009;   $ ssh-keygen -r host.example.com.

     The output lines will have to be added to the zonefile.  To check that
     the zone is answering fingerprint queries:

\375#009;   $ dig -t SSHFP host.example.com

     Finally the client connects:

\375#009;   $ ssh -o "VerifyHostKeyDNS ask" host.example.com
\375#009;   [...]
\375#009;   Matching host key fingerprint found in DNS.
\375#009;   Are you sure you want to continue connecting (yes/no)?

     See the VerifyHostKeyDNS option in ssh_config(5) for more information.

SSH-BASED VIRTUAL PRIVATE NETWORKS
     ssh contains support for Virtual Private Network (VPN) tunnelling using
     the tun(4) network pseudo-device, allowing two networks to be joined
     securely.\375#009;The sshd_config(5) configuration option PermitTunnel controls
     whether the server supports this, and at what level (layer 2 or 3 traf-
     fic).

     The following example would connect client network 10.0.50.0/24 with
     remote network 10.0.99.0/24 using a point-to-point connection from
     10.1.1.1 to 10.1.1.2, provided that the SSH server running on the gateway
     to the remote network, at 192.168.1.15, allows it.

     On the client:

\375#009;   # ssh -f -w 0:1 192.168.1.15 true
\375#009;   # ifconfig tun0 10.1.1.1 10.1.1.2 netmask 255.255.255.252
\375#009;   # route add 10.0.99.0/24 10.1.1.2

     On the server:

\375#009;   # ifconfig tun1 10.1.1.2 10.1.1.1 netmask 255.255.255.252
\375#009;   # route add 10.0.50.0/24 10.1.1.1

     Client access may be more finely tuned via the /root/.ssh/authorized_keys
     file (see below) and the PermitRootLogin server option.  The following
     entry would permit connections on tun(4) device 1 from user ``jane'' and
     on tun device 2 from user ``john'', if PermitRootLogin is set to
     ``forced-commands-only'':

       tunnel="1",command="sh /etc/netstart tun1" ssh-rsa ... jane
       tunnel="2",command="sh /etc/netstart tun2" ssh-rsa ... john

     Since an SSH-based setup entails a fair amount of overhead, it may be
     more suited to temporary setups, such as for wireless VPNs.  More perma-
     nent VPNs are better provided by tools such as ipsecctl(8) and
     isakmpd(8).

ENVIRONMENT
     ssh will normally set the following environment variables:

     DISPLAY\375#009;\375#009;   The DISPLAY variable indicates the location of the
\375#009;\375#009;\375#009;   X11 server.\375#009;It is automatically set by ssh to
\375#009;\375#009;\375#009;   point to a value of the form ``hostname:n'', where
\375#009;\375#009;\375#009;   ``hostname'' indicates the host where the shell
\375#009;\375#009;\375#009;   runs, and `n' is an integer >= 1.  ssh uses this
\375#009;\375#009;\375#009;   special value to forward X11 connections over the
\375#009;\375#009;\375#009;   secure channel.  The user should normally not set
\375#009;\375#009;\375#009;   DISPLAY explicitly, as that will render the X11
\375#009;\375#009;\375#009;   connection insecure (and will require the user to
\375#009;\375#009;\375#009;   manually copy any required authorization cookies).

     HOME\375#009;\375#009;   Set to the path of the user's home directory.

     LOGNAME\375#009;\375#009;   Synonym for USER; set for compatibility with sys-
\375#009;\375#009;\375#009;   tems that use this variable.

     MAIL\375#009;\375#009;   Set to the path of the user's mailbox.

     PATH\375#009;\375#009;   Set to the default PATH, as specified when compil-
\375#009;\375#009;\375#009;   ing ssh.

     SSH_ASKPASS\375#009;   If ssh needs a passphrase, it will read the
\375#009;\375#009;\375#009;   passphrase from the current terminal if it was run
\375#009;\375#009;\375#009;   from a terminal.  If ssh does not have a terminal
\375#009;\375#009;\375#009;   associated with it but DISPLAY and SSH_ASKPASS are
\375#009;\375#009;\375#009;   set, it will execute the program specified by
\375#009;\375#009;\375#009;   SSH_ASKPASS and open an X11 window to read the
\375#009;\375#009;\375#009;   passphrase.\375#009;This is particularly useful when call-
\375#009;\375#009;\375#009;   ing ssh from a .xsession or related script.\375#009;(Note
\375#009;\375#009;\375#009;   that on some machines it may be necessary to redi-
\375#009;\375#009;\375#009;   rect the input from /dev/null to make this work.)

     SSH_AUTH_SOCK\375#009;   Identifies the path of a UNIX-domain socket used to
\375#009;\375#009;\375#009;   communicate with the agent.

     SSH_CONNECTION\375#009;   Identifies the client and server ends of the con-
\375#009;\375#009;\375#009;   nection.  The variable contains four space-sepa-
\375#009;\375#009;\375#009;   rated values: client IP address, client port num-
\375#009;\375#009;\375#009;   ber, server IP address, and server port number.

     SSH_ORIGINAL_COMMAND  This variable contains the original command line if
\375#009;\375#009;\375#009;   a forced command is executed.  It can be used to
\375#009;\375#009;\375#009;   extract the original arguments.

     SSH_TTY\375#009;\375#009;   This is set to the name of the tty (path to the
\375#009;\375#009;\375#009;   device) associated with the current shell or com-
\375#009;\375#009;\375#009;   mand.  If the current session has no tty, this
\375#009;\375#009;\375#009;   variable is not set.

     TZ \375#009;\375#009;   This variable is set to indicate the present time
\375#009;\375#009;\375#009;   zone if it was set when the daemon was started
\375#009;\375#009;\375#009;   (i.e. the daemon passes the value on to new connec-
\375#009;\375#009;\375#009;   tions).

     USER\375#009;\375#009;   Set to the name of the user logging in.

     Additionally, ssh reads ~/.ssh/environment, and adds lines of the format
     ``VARNAME=value'' to the environment if the file exists and users are
     allowed to change their environment.  For more information, see the
     PermitUserEnvironment option in sshd_config(5).

FILES
     ~/.rhosts
\375#009;     This file is used for host-based authentication (see above).  On
\375#009;     some machines this file may need to be world-readable if the
\375#009;     user's home directory is on an NFS partition, because sshd(8)
\375#009;     reads it as root.\375#009;Additionally, this file must be owned by the
\375#009;     user, and must not have write permissions for anyone else.  The
\375#009;     recommended permission for most machines is read/write for the
\375#009;     user, and not accessible by others.

     ~/.shosts
\375#009;     This file is used in exactly the same way as .rhosts, but allows
\375#009;     host-based authentication without permitting login with
\375#009;     rlogin/rsh.

     ~/.ssh/
\375#009;     This directory is the default location for all user-specific con-
\375#009;     figuration and authentication information.  There is no general
\375#009;     requirement to keep the entire contents of this directory secret,
\375#009;     but the recommended permissions are read/write/execute for the
\375#009;     user, and not accessible by others.

     ~/.ssh/authorized_keys
\375#009;     Lists the public keys (RSA/DSA) that can be used for logging in
\375#009;     as this user.  The format of this file is described in the
\375#009;     sshd(8) manual page.  This file is not highly sensitive, but the
\375#009;     recommended permissions are read/write for the user, and not
\375#009;     accessible by others.

     ~/.ssh/config
\375#009;     This is the per-user configuration file.  The file format and
\375#009;     configuration options are described in ssh_config(5).  Because of
\375#009;     the potential for abuse, this file must have strict permissions:
\375#009;     read/write for the user, and not accessible by others.

     ~/.ssh/environment
\375#009;     Contains additional definitions for environment variables; see
\375#009;     ENVIRONMENT, above.

     ~/.ssh/identity
     ~/.ssh/id_dsa
     ~/.ssh/id_rsa
\375#009;     Contains the private key for authentication.  These files contain
\375#009;     sensitive data and should be readable by the user but not acces-
\375#009;     sible by others (read/write/execute).  ssh will simply ignore a
\375#009;     private key file if it is accessible by others.  It is possible
\375#009;     to specify a passphrase when generating the key which will be
\375#009;     used to encrypt the sensitive part of this file using 3DES.

     ~/.ssh/identity.pub
     ~/.ssh/id_dsa.pub
     ~/.ssh/id_rsa.pub
\375#009;     Contains the public key for authentication.  These files are not
\375#009;     sensitive and can (but need not) be readable by anyone.

     ~/.ssh/known_hosts
\375#009;     Contains a list of host keys for all hosts the user has logged
\375#009;     into that are not already in the systemwide list of known host
\375#009;     keys.  See sshd(8) for further details of the format of this
\375#009;     file.

     ~/.ssh/rc
\375#009;     Commands in this file are executed by ssh when the user logs in,
\375#009;     just before the user's shell (or command) is started.  See the
\375#009;     sshd(8) manual page for more information.

     /etc/hosts.equiv
\375#009;     This file is for host-based authentication (see above).  It
\375#009;     should only be writable by root.

     /etc/ssh/shosts.equiv
\375#009;     This file is used in exactly the same way as hosts.equiv, but
\375#009;     allows host-based authentication without permitting login with
\375#009;     rlogin/rsh.

     /etc/ssh/ssh_config
\375#009;     Systemwide configuration file.  The file format and configuration
\375#009;     options are described in ssh_config(5).

     /etc/ssh/ssh_host_key
     /etc/ssh/ssh_host_dsa_key
     /etc/ssh/ssh_host_rsa_key
\375#009;     These three files contain the private parts of the host keys and
\375#009;     are used for host-based authentication.  If protocol version 1 is
\375#009;     used, ssh must be setuid root, since the host key is readable
\375#009;     only by root.  For protocol version 2, ssh uses ssh-keysign(8) to
\375#009;     access the host keys, eliminating the requirement that ssh be
\375#009;     setuid root when host-based authentication is used.  By default
\375#009;     ssh is not setuid root.

     /etc/ssh/ssh_known_hosts
\375#009;     Systemwide list of known host keys.  This file should be prepared
\375#009;     by the system administrator to contain the public host keys of
\375#009;     all machines in the organization.\375#009;It should be world-readable.
\375#009;     See sshd(8) for further details of the format of this file.

     /etc/ssh/sshrc
\375#009;     Commands in this file are executed by ssh when the user logs in,
\375#009;     just before the user's shell (or command) is started.  See the
\375#009;     sshd(8) manual page for more information.

SEE ALSO
     scp(1), sftp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssh-keyscan(1),
     tun(4), hosts.equiv(5), ssh_config(5), ssh-keysign(8), sshd(8)

     The Secure Shell (SSH) Protocol Assigned Numbers, RFC 4250, 2006.

     The Secure Shell (SSH) Protocol Architecture, RFC 4251, 2006.

     The Secure Shell (SSH) Authentication Protocol, RFC 4252, 2006.

     The Secure Shell (SSH) Transport Layer Protocol, RFC 4253, 2006.

     The Secure Shell (SSH) Connection Protocol, RFC 4254, 2006.

     Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC
     4255, 2006.

     Generic Message Exchange Authentication for the Secure Shell Protocol
     (SSH), RFC 4256, 2006.

     The Secure Shell (SSH) Session Channel Break Extension, RFC 4335, 2006.

     The Secure Shell (SSH) Transport Layer Encryption Modes, RFC 4344, 2006.

     Improved Arcfour Modes for the Secure Shell (SSH) Transport Layer
     Protocol, RFC 4345, 2006.

     Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer
     Protocol, RFC 4419, 2006.

     The Secure Shell (SSH) Public Key File Format, RFC 4716, 2006.

     A. Perrig and D. Song, Hash Visualization: a New Technique to improve
     Real-World Security, 1999, International Workshop on Cryptographic
     Techniques and E-Commerce (CrypTEC '99).

AUTHORS
     OpenSSH is a derivative of the original and free ssh 1.2.12 release by
     Tatu Ylonen.  Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo
     de Raadt and Dug Song removed many bugs, re-added newer features and cre-
     ated OpenSSH.  Markus Friedl contributed the support for SSH protocol
     versions 1.5 and 2.0.

FreeBSD 6.2\375#009;\375#009;\375#009; May 22, 2019\375#009;\375#009;\375#009;   FreeBSD 6.2